Search results for "Quantum oscillations"

showing 7 items of 7 documents

Bloch oscillations in Fermi gases

2003

The possibility of Bloch oscillations for a degenerate and superfluid Fermi gas of atoms in an optical lattice is considered. For a one-component degenerate gas the oscillations are suppressed for high temperatures and band fillings. For a two-component gas the Landau criterion is used for specifying the regime where Bloch oscillations of the superfluid may be observed. We show how the amplitude of Bloch oscillations varies along the BCS-BEC crossover.

PhysicsCondensed Matter::Quantum GasesOptical latticeCondensed matter physicsCondensed Matter - Mesoscale and Nanoscale PhysicsCondensed Matter::OtherDegenerate energy levelsQuantum oscillationsFOS: Physical sciencesAtomic and Molecular Physics and Opticslaw.inventionSuperfluiditylawQuantum electrodynamicsMesoscale and Nanoscale Physics (cond-mat.mes-hall)Bloch oscillationsFermi gasBose–Einstein condensateBloch wave
researchProduct

Evidence of charge-carrier compensation effects inLa0.67Ca0.33MnO3

1998

We report on detailed Hall-effect measurements of thin films of ${\mathrm{La}}_{0.67}{\mathrm{Ca}}_{0.33}{\mathrm{MnO}}_{3}$ above and below the metal-insulator transition. In the metallic ferromagnetic regime, we find a temperature-independent holelike nominal charge-carrier density ${n}_{h}^{*}=1.3$ per unit cell, consistent with a partly compensated Fermi surface. The mobility is only 92 ${\mathrm{mm}}^{2}/\mathrm{V}\mathrm{}\mathrm{s}$ at 4 K, and decreases with increasing temperature. Huge negative magnetoresistivity results from an increase in mobility. In low magnetic fields or at high temperatures, an anomalous electronlike contribution dominates the Hall voltage. For possible side …

PhysicsCondensed matter physicsFerromagnetismHall effectThermal Hall effectQuantum oscillationsCondensed Matter::Strongly Correlated ElectronsCharge carrierFermi surfaceElectronMagnetic fieldPhysical Review B
researchProduct

Landau Fermi Liquid Theory and Beyond

2014

In this chapter we consider the Landau theory of the Fermi liquid that has a long history and remarkable results in describing a numerous properties of the electron liquid in ordinary metals and Fermi liquids of the \(^3\)He type. The theory is based on the assumption that elementary excitations determine the physics at low temperatures, resembling that of weakly interacting Fermi gas. These excitations behave as quasiparticles with a certain effective mass. The effective mass \(M^*\) exhibits a simple universal behavior, for it is independent of the temperature, pressure, and magnetic field strength and is a parameter of the theory. Microscopically deriving the equation determining the eff…

PhysicsEffective mass (solid-state physics)Condensed matter physicsElectron liquidQuantum oscillationsFermi liquid theoryLandau quantizationFermi gasShubnikov–de Haas effectLandau theory
researchProduct

Highly Correlated Fermi Liquid in Heavy-Fermion Metals: Magnetic Properties

2014

In this chapter we show how the FCQPT theory works, when describing the behavior of HF metals under the application of magnetic field. We show that a large body of experimental data regarding the thermodynamic, transport and relaxation properties collected in measurements on HF metals can be well explained. It is demonstrated that the experimental data exhibit the scaling behavior.

PhysicsEffective mass (solid-state physics)Condensed matter physicsQuantum oscillationsFermi surfaceFermi liquid theoryWilson ratioMagnetic susceptibilityScalingMagnetic field
researchProduct

Neutron Fermi liquids under the presence of a strong magnetic field with effective nuclear forces

2009

Landau's Fermi liquid parameters are calculated for non-superfluid pure neutron matter in the presence of a strong magnetic field at zero temperature. The particle-hole interactions in the system, where a net magnetization may be present, are characterized by these parameters in the framework of a multipolar formalism. We use either zero- or finite-range effective nuclear forces to describe the nuclear interaction. Using the obtained Fermi liquid parameters, the contribution of a strong magnetic field on some bulk magnitudes such as isothermal compressibility and spin susceptibility is also investigated.

PhysicsNuclear and High Energy PhysicsFermi contact interactionNuclear TheoryCondensed matter physicsFOS: Physical sciencesFísicaQuantum oscillationsNuclear matterNuclear Theory (nucl-th)MagnetizationNuclear forceNeutronFermi liquid theoryFermi gas
researchProduct

Appearance of Fermion-Condensation Quantum Phase Transition in Fermi Systems

2014

As high-\(T_c\) superconductors are represented primarily by 2D layered structures, in Sect. 5.1 we discuss the superconducting state of a 2D liquid of heavy electrons, and within the framework of Gor’kov microscopic equations construct the Green functions of the FC state. On the other hand, our study can easily be generalized to the 3D case. To show that there is no fundamental difference between the 2D and 3D cases, we derive Green’s functions for the 3D case in Sect. 5.1.1. In Sect. 5.2, we consider the dispersion law and lineshape of single-particle excitations. Section 5.3 is devoted to the behavior of heavy-electron liquid with FC in magnetic field. In Sect. 5.4, we analyze conditions…

PhysicsQuantum phase transitionsymbols.namesakeCondensed matter physicsCondensed Matter::SuperconductivityQuantum critical pointsymbolsQuantum oscillationsFermi's golden ruleFermi energyFermi liquid theoryQuantum phasesFermi gas
researchProduct

Magnetic breakdown and charge density wave formation: a quantum oscillation study of the rare-earth tritellurides

2020

The rare-earth tritellurides ($R$Te$_3$, where $R$ = La, Ce, Pr, Nd, Sm, Gd, Tb, Dy, Ho, Er, Tm, Y) form a charge density wave state consisting of a single unidirectional charge density wave for lighter $R$, with a second unidirectional charge density wave, perpendicular and in addition to the first, also present at low temperatures for heavier $R$. We present a quantum oscillation study in magnetic fields up to 65T that compares the single charge density wave state with the double charge density wave state both above and below the magnetic breakdown field of the second charge density wave. In the double charge density wave state it is observed that there remain several small, light pockets…

Quantum phase transitionPhysicsCondensed matter physicsStrongly Correlated Electrons (cond-mat.str-el)Rare earthQuantum oscillationsFOS: Physical sciencesModel systemFermi surface02 engineering and technologyMagnetic breakdown021001 nanoscience & nanotechnology01 natural sciencesCondensed Matter - Strongly Correlated ElectronsEffective mass (solid-state physics)0103 physical sciences010306 general physics0210 nano-technologyCharge density wave
researchProduct